
Article https://doi.org/10.1038/s41467-024-45786-y

Computational design of ultra-robust strain
sensors for soft robot perception and
autonomy

Haitao Yang1,2,7, Shuo Ding 3,4,7, Jiahao Wang2,7, Shuo Sun 5,
Ruphan Swaminathan 6, Serene Wen Ling Ng2, Xinglong Pan2 &
Ghim Wei Ho 2

Compliant strain sensors are crucial for soft robots’perception and autonomy.
However, their deformable bodies and dynamic actuation pose challenges in
predictive sensor manufacturing and long-term robustness. This necessitates
accurate sensor modelling and well-controlled sensor structural changes
under strain. Here, we present a computational sensor design featuring a
programmed crack array within micro-crumples strategy. By controlling the
user-defined structure, the sensing performance becomes highly tunable and
can be accurately modelled by physical models. Moreover, they maintain
robust responsiveness under various demanding conditions including noise
interruptions (50% strain), intermittent cyclic loadings (100,000 cycles), and
dynamic frequencies (0–23Hz), satisfying soft robots of diverse scaling from
macro to micro. Finally, machine intelligence is applied to a sensor-integrated
origami robot, enabling robotic trajectory prediction (<4% error) and topo-
graphical altitude awareness (<10% error). This strategy holds promise for
advancing soft robotic capabilities in exploration, rescue operations, and
swarming behaviors in complex environments.

Emerging soft robots, notable for their flexible body deformations and
outstanding motion agility1–4, offer compliant, robust, and safe inter-
actions for dynamic tasks in unstructured environments5–8. To enable
soft robots to truly respond intelligently to the external world, it is
integral to incorporate soft perception components, compliant strain
sensors, into the robotic structure to allow real-time sensing of various
environmental stimuli as feedback and achieve the kinematic estima-
tion of the robot itself and mapping of surroundings for autonomous
navigation9–13. However, this automationmilestone is hindered by high
degree-of-freedom (DOF) body deformations and mutative actuating
behaviors of robots14,15, which complicate the robot kinematics and

pose great design challenges for integrated strain sensors. On one
hand, to satisfy the diverse sensing demands of various soft robots
with distinct actuation behaviors or dimension scales, it is crucial to
fabricate strain sensors with user-designated characteristics (e.g.,
sensitivity, linear working window)14,16–18 which generally require dif-
ferent design principles and multiple trial-and-error experiments19–23.
This time-consuming empirical experimentation becomes tricky when
there is a need for custom production that is predictive in nature to
streamline the design process and minimize iterations. An alternative
approach involves the development of sensor modelling tools, utiliz-
ing mathematical statistics or physical simulation, to virtually confirm
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and optimize sensor characteristics based on device composition and
morphology24. However, this approach is challenged by the unpre-
dictable material and structure evolutions of the dynamics of con-
ventional soft strain sensors15,25.

On the other hand, sensor stability is central to soft robotic
automationwith accurate closed-loop control, but it is often neglected
in academic research26,27. This oversight directly impacts the ability of
soft robots to accurately estimate themselves and adapt to environ-
mental changes in real-time without the need for recalibration and
error correction, periodic resting for materials recovery or energy
dissipation, etc14. For the state-of-the-art soft strain sensors, their sta-
bility tests were mostly performed under monotonic, repetitive, and
controlled conditions16–22,28–35, but do not adequately represent the
complexity and uncertainty present in real-worldworking situations of
soft robots. Often, soft robots face external mechanical interruptions
or unexpected deformations in noisy environments and need to work
intermittently to maintain their performance and reduce the risk of
premature failure2,8,36,37. In addition, the evolving working speeds
(0.1–20Hz)8,38–40 of soft robots necessitate that the integrated sensor
demonstrates a stable response even under varying frequencies of
operation. However, when monitoring these noisy, intermittent, and
dynamic robot motions, the integrated strain sensors usually experi-
ence material/structure failures, resulting in large signal distortions
anddegraded feedback17,22,41–45. It is significant todevelophighly robust
sensors that can sustain complex and dynamic operating environ-
ments to bridge the gap between soft sensors and robot practicality.

In this work, based on the deterministic crack propagation
mechanism, a computational strain sensor design is developed to
address both the sensor modelling and sensor stability challenges to
realize autonomous soft robot navigation. Firstly, sensor modelling is
achieved via precise sensor manufacturing as well as prescribed
structure evolution. Basically, through laser-aided fabrication, user-
defined interdigital crack arrays were programmed within the micro-
crumples of piezoresistive strain sensors, illustrating highly con-
trollable crack propagation behaviors and tunable sensor character-
istics. By inputting the sensor structure parameters including crack
density and micro-crumple feature, corresponding finite element
analysis (FEA) models were established to conduct dual physical fields
including mechanical and electrical evolutions, and simulate the sen-
sing curves ofdifferent sensorswith high accuracy. Secondly, excellent
sensor robustness was materialized by the deterministic crack propa-
gation mode and micro-crumple feature. In particular, the as-
fabricated sensors showed long-term mechanical robustness under
noise interruptions (up to 50% strain), intermittent cyclic loadings
(100,000 cycles), and dynamic operation frequencies (0–23Hz),
satisfying the diverse sensing requirements of soft robots frommacro
to micro scales. With the aid of machine learning algorithms, a sensor-
integrated origami robot could realize autonomous robot navigation
of high accuracy, including self-estimation (robotic trajectory predic-
tion with <4% error) and surroundings mapping capabilities (topo-
graphy altitude awareness with <10% error). The convergence of both
hardware sensor and software system advancements allows the soft
robot to sense and perceive reliably, make informed decisions, and
navigate autonomously in complex environments.

Results
Computation-guided PCAM sensor design
In this study, we employed environmentally stable single-walled car-
bon nanotubes (SWNT) to fabricate piezoresistive strain sensor. A two-
stage design was developed, incorporating the feature of “pro-
grammed cracks array within micro-crumples,” resulting in what we
abbreviated as PCAM sensor. First, as shown in Fig. 1a, a computer-
programmed laser machine creates user-defined interdigital patterns
that consist of an interlocking comb-shaped crack array on SWNT-
coated polystyrene (PS) films (SWNT thickness was ca. 600 nm, see

details in Supplementary Figs. 1–4, Methods, and Supplementary
Note 1). The laser beam power was precisely controlled at 0.08mW to
ensure only the upper SWNT layer along with the interdigital lines was
trimmed to form the cracks arraywhile the PS substratewaskept intact
(Supplementary Fig. 5). The width of the programmed crack was ca.
20 µm (Fig. 1b).

Second, the laser-processed crack array underwent thermally
induced dimensional shrinkage. The PS substrate, being thermally
responsive, contracts in a biaxial direction above the glass transition
temperature (Tg) (ca. 100 °C). By harnessing the surface instability of
the SWNT-coated PS devices at 140 °C, as shown in Fig. 1c and Sup-
plementary Fig. 6, the upper SWNT layerwas biaxially compressed into
isotropic crumples, leading to the overlaying of the laser-programmed
cracks. Afterward, the shrunken device was top coated with a 2mm
thick Ecoflex (00–35), and the rigid PS substrate was removed to
obtain an Ecoflex-coated SWNT device, defined as the PCAM sensor
(see fabrication details in Methods).

FEA and in-situ scanning electron microscope (SEM) studies were
conducted to explore the structural evolution of the PCAM sensor
under uniaxial strains. As shown in Fig. 1d and Supplementary Fig. 7,
before stretching, a uniform stress distribution within the SWNT layer
without crack was observed. With increasing applied strains to 60%,
localized stress along the programmed interdigital pattern emerged,
leading to the growth of interdigitated cracks. As a result, the length of
the conductive pathway gradually increased, which induced higher in-
plane resistances that serve as a strain sensor. Figure 1e presents the
strain sensing profiles of a PCAM sensor with a simple interdigital
pattern 1 (see dimension details in Supplementary Fig. 4b), showing a
three-stage sensing response. First, there is a silent region from0 to ca.
20% strains, where the resistance changes were small. Afterward, it
experienced a quick response from 20% to ca. 60% and then gradually
reached a plateau. We implemented in situ SEM studies and FEA
simulation to reveal the structure evolutions and mechanism. As
shown in Supplementary Fig. 7, there was relative uniform stress dis-
tribution across the SWNT sensing layer when applying <20% strain,
and the in-plane micro-crumples were gradually deformed to release
the compressive pre-strains from thermal contraction during sensor
fabrication, and slowly widening the cracks. When the applied strain
≥20%, low stress was concentrated on the crack trace locations, which
were more easily deformed, and the cracks started growing quickly
until ca.60% strain. Thereafter, the length of each crack reached its
maximum value, and further cracks grew in the width instead of the
length, minimally affecting the conductive pathways within the SWNT
layer of sensor. As a result, the sensing signal changes became milder
at this stage.

Sensor fabrication reproducibility is highly critical for practical
applications to ensure minimal device-to-device error and avoid the
need for frequent re-calibration. In this study, as shown in Fig. 1e, the
PCAM sensor reproducibility was accessed based on three sensor
replicates, all of which exhibited highly consistent sensing curves with
small signal variations.

Two characteristics of a strain sensor are generally evaluated,
including sensitivity and linear working window. The sensitivity of a
strain sensor is characterized by gauge factor (GF), as defined in Eqs. 1
and 2,

δε =
Rε � R0

R0
ð1Þ

GF=
δε

ε
ð2Þ

where δε is the relative resistance change at ε strain, ε denotes the
applied strain, R0 and Rε represent the initial resistance and the resis-
tance under ε strain, respectively. The linear working window of a
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strain sensor is determined by the strain range where its resistance
increased linearly with the applied strain.

Notably, the GF and linear working window of a PCAM sensor can
be tuned in a programmable fashion by setting the fabrication para-
meters in the two design stages. Particularly, GF values are adjustable
by varying crack densities (ρ) in the first design stage. The ρ is defined
by Eq. 3,

ρ=
PðLcrack Þ

Sarea
ð3Þ

where
PðLcrackÞ is the cumulative length of surface cracks, and Sarea is

the surface area of the SWNT layer. When adopting crack arrays 1, 2,
and 3 in Fig. 1f (see dimension details in Supplementary Fig. 4), the
ρ values were calculated as 300, 600, and 1200 µmmm−2, respectively.
With increasing ρ values, as shown in Fig. 1g, PCAM sensors showed a
little increased range of linear working windows from 17–70% to
15–70% and 10–70%, while their GF was greatly improved from 2.3 to
8.4 and 35. Sensor reproducibility at higher ρ values were also tested
and discussed in Supplementary Note 2. Further improvement of the
sensor’s GF (>200) was achievable by controlling the laser etching
depthof the SWNT layer (see Supplementary Fig. 8 andSupplementary
Note 3 for discussion).

In addition to GF, the sensor’s linear working windows were
determined during the second-stage design. As shown in Supple-
mentary Fig. 6, by setting different heating durations, the shrinkage
ratio (φ) of the PS film was tunable from 0 to 55%. The φ was defined
and calculated by Eq. 4,

φ=
D0 � DAf ter

D0
ð4Þ

where D0 and Dafter are dimensions of the PS shrink film before and
after thermal contraction. As shown in Fig. 1h, i, when theφ valueswere
controlled as 25%, 40%, and 55%, the resulting SWNT layer showed
increasing crumples sizes with hierarchical structures, and the corre-
sponding PCAM sensors demonstrated a shifting linear working win-
dow from 5–50% to 10–70% and 20–120%. As both parameters of ρ and
φ could be computationally determined before sensor fabrication, it
signifies a computation-guided sensor design.

Physical modelling of the PCAM sensor
The computational designed sensor provides a unique opportunity for
the physical modelling of the developed PCAM sensors to pre-
determine their sensing performances without conducting experi-
ments. As shown in Fig. 2a, an FEA model consisting of a SWNT layer

Fig. 1 | Computation-guided PCAM sensor design. a Computer-aided design of
interdigital crack pattern. b Illustration of pattern processing by a laser machine
and optical images of the processed crack array. c SEM images of the fabricated
strain sensor. d FEA simulated stress maps of PCAM sensor under strains. e Strain
sensing profiles of a PCMA sensor (ρ = 300 µmmm−2, φ = 40%) with three replicas.
f Interdigital crack patternwith different crack densities (ρ values).g Strain sensing

profile of PCAM sensors with different ρ values. The φ values of all sensors were
kept as 40%. The error bars were calculated based on three sensor replicas. h SEM
images of PCAM sensors with different φ values. i Strain sensing profile of PCAM
sensors with different φ values. The ρ values of all sensors were kept at
1200 µmmm−2.
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and an Ecoflex substrate was constructed to simulate the bilayer sen-
sor structure, where ρ andφwere input asmodel structure parameters
(see details inMethods). With the parameter setup and the application
of a constant current in the FEA model, a dual physical field including
mechanical and electrical simulationwas simultaneously implemented
to extract the sensor model’s resistance evolution under strains. Fig-
ure 2b and Supplementary Movie 1 illustrate the dynamics of a PCAM
sensor (ρ = 300 µmmm−2;φ = 40%). As the PCAM sensor was subjected
to uniaxial strain loading, its surface cracks gradually grew from 0% to
100% strain.Meanwhile, the surface potential drops gradually enlarged
from 25% to 75% strains but stabilized afterward until 100% strains. By
extracting the potential change as well as the current data, the relative
resistance change profile of the specific sensor model was calculated
and plotted in Fig. 2c, which is consistent with the experimental
results. Following similar procedures, in Fig. 2d, PCAM sensors with
ρ as 600 and 1200 µmmm−2 were also modelled and the results
showedgood agreementwith the experimental data. It isworth to note
that current sensor performance modelling was made during strain
loading process, yet the strain unloading process remained unsolved
due to the difficulties in simulating the spontaneously stress relaxation
of elastic polymer segments of sensor substrate which is a nanoscale
physical process and shows non-steady feature. The FEA tool not only

facilitates experiment-free sensing performance modelling, but also
provides inverse insights into the sensor design principles. For exam-
ple, the electrical distributionmaps in Fig. 2e delineate the relationship
betweenGF and ρ. As such, a larger ρ leads to a higher surfacepotential
drop under the same strain, which induces an increasing relative
resistance change of the sensor to attain a higher GF.

The PCAM sensormodelling with varying φwas also investigated.
Firstly, in Fig. 2f, the stress-strain curves of the SWNT layers with dif-
ferentφ values weremeasured by a tensile testmachine, and the curve
slope represents the Young’s modulus of SWNT layers. According to
the results, whenφ increases to 25%, 40%, 55%, the Young’smodulus of
SWNT layer showed a decreasing trend from 33.8 to 5.5MPa. Lower
Young’s modulus means the deformation of SWNT layer require
smaller force. Such a trend is attributed to the different sizes of micro-
crumples within the SWNT layer. As shown in Supplementary Fig. 9,
micro-crumples were generated after the dimension shrinkage during
the sensor fabrication. This kind of micro-structures stored elastic
force within the SWNT layer. With higher φ values, the size of micro-
crumples was enlarged, corresponding to a higher stored elastic force
like a more compressed spring. Therefore, SWNT layer with higher φ
value requires a smaller force to induce the deformation, which is
reasonable to illustrate a lower Young’smodulus. By inputting Young’s
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modulus data, the dynamics of PCAM sensors under varying φ were
modelled and their sensing profiles were extracted in Fig. 2g, which
corroborates the experimental results. Furthermore, these FEAmodels
explain the phenomenon of working window shifts under different φ.
Figure 2h compares the stress maps of different sensors under 50%
strain, demonstrating that the sensor with a higher φ exhibits a lower
in-plane stress concentration and slower surface cracks propagation.
Considering this, it is reasonable to expect a high φ to translate into a
larger sensor working window.

Mechanical stability of the PCAM sensor
The mechanical stability of a sensor is crucial for its practical usage in
complex environments, which may involve noise interruptions, long-
term intermittent cyclic loadings, and dynamic operation frequencies.
Herein, the PCAM sensor with a ρ of 1200mm µm−2 and aφ of 40%was
selected as a representative case to study, due to its balanced char-
acteristics of GF and linear working window (Fig. 1i). We first con-
ducted some general mechanical testings namely sensing
performances of the PCAM sensor under different uniaxial strains
(Supplementary Fig. 10) and cyclic bending/twisting loading (Supple-
mentary Fig. 11). In addition, the hysteresis of a PCAM sensor
(Uhysteresis) was quantified by measuring the maximal signal difference

between the stretching and releasing processes, as defined in Eq. 5,

Uhysteresis =Max δstretching � δreleasing

��� ��� ð5Þ

where δstretching is the relative resistance change signal, (Rε-R0)/R0, of
the PCAMsensor at ε strain during the stretching process, and δreleasing

is the relative resistance change of the PCAM sensor at ε strain during
the relaxation process. Based on Supplementary Fig. 12, the hysteresis
values of PCAMsensor under increasing applied strains (20–70%)were
calculated as 0.51, 1.75, 1.91, 2.90, 3.54, 3.63, respectively, as the hys-
teresis of the Ecoflex substrate increased with the applied strains46.
Supplementary Note 4 discussed a sandwiched structure to further
decrease the sensor hysteresis.

Sensor stability under interrupted mechanical deformations was
investigated (Fig. 3a and Supplementary Movie 2), where the sensor
experienced a dynamic mechanical loading sequence consisting of
stretching, twisting, stretching, bending, and stretching. The PCAM
sensor remained stable with consistent sensing signals throughout the
multiple stretching processes. On the contrary, a planar sensor (with-
out micro-features) showed large signal fluctuations during the test
(Supplementary Movie 3). The exceptional stability of the PCAM sen-
sor was attributed to its micro-crumples that could counteract
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multiaxial mechanical impacts without damaging the sensor. This can
be inferred from the observation of an intact PCAM sensor structure
(Fig. 3b and Supplementary Fig. 13) as opposed to the planar sensor
that showed new surface cracks (Supplementary Fig. 14). As discussed
in Supplementary Note 5, the tolerance of mechanical noise for the
PCAM sensor was ca. 50% strain.

To simulate the intermittent working scenario, the PCAM sensor
was subjected to 20 rounds of intermittent cyclic loading. Each cyclic
loading consisted of 5000 cycles of uniaxial stretching at 85% strains,
with a 1-h time intervalbetween eachcycle. ThePCAMsensor exhibited
robust sensing signals throughout the cumulative 100,000 inter-
mittent cyclic loadings (Fig. 3c and Supplementary Figs. 15, 16). Both
the signal baseline and peaks remained consistent, indicating dur-
ability and stable sensor performance. For comparison, a planar sensor
without micro-features and a crumpled sensor featuring micro-
crumples without programmed cracks were fabricated and tested.
The corresponding results were recorded in Supplementary Figs. 17
and 18, where both sensors demonstrated significant signal deviations.
Herein, sensor signal deviation was defined and quantified by Eq. 6,

SignalDeviationi =
δi � δ1

A
ð6Þ

where δi is the sensor’s relative resistance change (see definition in
Eq. 1) of the ith cycle, δ1 is the sensor’s relative resistance change of 1st
cycle, and A is the δ signal amplitude of the 1st cycle. A higher signal
deviation indicates worse sensor stability, and vice versa. As sum-
marized in Fig. 3d, the PCAM sensor maintained a small signal devia-
tion of approximately 6% over the course of 25,000 intermittent cyclic
loadings, while the planar and crumpled sensors exhibited much
higher signal deviations, which steadily increased to 40% and 120%,
respectively.

Additionally, mechanical tests were conducted at varying sensor
operation frequencies. First, the PCAM sensor produced steady signals
under a static stretching state (i.e., 0Hz) for over 30min (Supplemen-
tary Fig. 19). Furthermore, the PCAM sensor performances under
dynamic stretching frequencies were evaluated using a stretching
machine (Supplementary Fig. 20), where the sensor signals remained
stable across 1 to 10Hz (Fig. 3e and Supplementary Movie 4). A slight
signal shift at 10Hz can be attributed to the hysteresis effects of the
Ecoflex substrate. Furthermore, the excellent sensor stability of the
PCAM sensor was demonstrated under an extremely high working fre-
quency of 23Hz (Supplementary Fig. 21 and Supplementary Movie 5).
Given that state-of-the-art soft actuators operate within a range of
mutative speeds (0.1–20Hz)8,38–40, it is essential for PCAM sensors to
exhibit a stable sensing response across dynamic operation frequencies,
making them deployable for a broad range of soft robot applications.

PCAM sensor-integrated soft robots across scales
Thesehighly robust PCAMsensorswere further integrated into a series
of soft robots across various scales to enrich robotic sensing cap-
ability. The first application of these PCAM sensors was demonstrated
by integrating them into a 15 cm-length origami robot (Fig. 4a). Under
magnet actuation (see details in Supplementary Note 6), the origami
robot showcased multimodal locomotion, including forward/back-
ward movement and left/right turns (Fig. 4b and Supplementary
Movie 6), while the integrated body sensors provided real-time elec-
tronic feedback. Figure 4c depicts the continuous monitoring of the
origami robot during comprehensive navigation involving moving
forward 60 steps, moving backward 5 steps, turning left 10 steps, and
encountering an obstacle. The on-body sensing profiles were com-
pared to identify the robot actuation states (see analyses in Supple-
mentary Note 7). In addition, according to the sensor signal changes
shown in Supplementary Figs. 22–24, the origami robot could also
distinguish different surface roughness (defined by the arithmetical

mean height (Ra), see Methods), such as the desktop (Ra = 2.4 µm),
printing paper (Ra = 3.5 µm), watery surface (Ra =0.6 µm), or when
encountering an obstacle.

Besides, the PCAM sensors were embedded into a pneumatic
robot, as shown in Fig. 4d and Supplementary Fig. 25. Soft pneumatic
bodies typically exhibit high DOF deformations during actuation,
making long-term body sensing a challenging task. However, the SEM
image in Fig. 4d showed that the PCAM sensor structure remained
integral after repeated pneumatic deformations, enabling the robot
sensing ofmultimodal locomotion, surface identification, and obstacle
detection (Supplementary Figs. 26–28). Long-term sensing scenarios
were also examined. Based on the setups in Supplementary Figs. 29–32
and Supplementary Note 8, a sensor-integrated pneumatic robot was
controlled to complete long trajectories in an artificial terrain (trajec-
tory 1: 25 cm, turning mode, 131 steps; trajectory 2: 60 cm, crawling
mode, 221 steps.). Both trajectories were repeated 5 times. The cor-
responding sensing profiles were recorded (Fig. 4e, f, Supplementary
Figs. 33–34, and Supplementary Movies 7 and 8), wherein notable
consistency in the sensor signal was observed across all five iterations
of each trajectory. Specifically, according to Supplementary
Figs. 35–36, the sensor signal deviations (defined in Eq. 6) between the
first and fifth iterations of both trajectories were approximately 6%. In
contrast, when planar and crumpled sensors were integrated into the
pneumatic robot, significant shifts in robot signals were detected after
repeated navigations, with peak signal deviations exceeding 50%
(Supplementary Figs. 35 and 36). This comparison is summarized in
Supplementary Figs. 37 and 38.

Beyond macro-scale robots, we also demonstrated the seamless
integration of PCAM sensors withmicromachines. Figure 4g illustrates
the scalable fabrication of a cross-shaped interdigital pattern with a
SWNT film using a laser machine. The crack pattern was cut out, sub-
jected to thermal shrinkage, and integrated with an (Nd-Fe-B)-Ecoflex
substrate to forma tetrapodmicrorobot (see details in Supplementary
Fig. 39 and Methods). The dimension of the as-fabricated microrobot
was around 700 µm (Fig. 4h). After polarization under a strong mag-
netic field (exceeding 1 T, see setups in Supplementary Fig. 39), the
tetrapod microrobot was able to undergo reversible body transfor-
mation (Fig. 4i), along with on-body sensing (Supplementary Fig. 40)
under repeated magnetic actuation.

Intelligent sensor network for robotic trajectory prediction
Given the direct correlation between on-body sensor signals and
robotic actuation states, an intelligent sensornetworkwas constructed
to predict robotic trajectories by machine learning (ML) algorithm. In
this work, origami robot was selected as the ML demonstration from
three kinds of developed robots, due to its large number of locomo-
tion modes as well as untethered actuation features (see discussion in
Supplementary Note 9). As shown in Supplementary Figs. 41 and 42, a
sensor-integrated robotwasdeveloped, consisting of an origami body,
four PCAM sensors, and amagnet actuation platform. Under repeated
forward/backward or left/right movements, the robot was able to
crawl long distances (>110 cm) with a small system error (relative
error < 1%, absolute error < 0.8 cm, see characterizations in Supple-
mentary Fig. 43 and Supplementary Note 10). With the controlled
actuation and reliable sensors, an ML-enabled trajectory prediction
model was built in two steps. First, as shown in Fig. 5a, b, the sensor-
integrated origami robot was placed in an artificial terrain to execute
multi-directional trajectories, and the real-time sensor data was col-
lected in amulti-channelled fashion. These sensor data combined with
robot actuation information, served asmodel inputs. Herein, as shown
in Fig. 5a, the actuation information contained the instructions from
robot control station including crawling direction (1 refers to crawling
forward, −1 refers to crawling backward, and 0 refers to no crawling
motion) and turning direction (1 refers to turning left, −1 refers to
turning right, and 0 refers to no turning motion). Concurrently, the
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robot trajectory was recorded by a camera system (see Supplementary
Fig. 44), and real-time robot locations in the terrain were extracted
using a “Tracker”program(anopen-sourced software, seeMethods) to
use as model outputs. As illustrated in Fig. 5c, the sensing and actua-
tion information were input as the training data to anMLmodel based
on artificial neural network (ANN) for predicting robot trajectories.
Detailed ML framework is provided in Methods.

In this study, 38 collected data sets were used as training data to
establish the trajectory prediction model (see data files in GitHub).
Thereafter, as shown inFig. 5d, 5 additional data sets, whichwere never
previously presented to the prediction model, were used to evaluate
themodel predictionaccuracy. The relative error (RE) and the absolute
error (AE) between the predicted robot location and actual location
values were calculated in Eqs. 7 and 8,

REi =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xpre � xreal

� �2
+ ypre � yreal
� �2

r

S

ð7Þ

AEi =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xpre � xreal

� �2
+ ypre � yreal
� �2

r
ð8Þ

where i is the index of the test set (i = 1–5) xpre and xreal are the pre-
dicted and real robot destination location in the x direction (see the
setup of the coordinate system in Fig. 5d) of the ith test set, respec-
tively; ypre and yreal are the predicted and real robot destination loca-
tions in the y direction of the ith test set, respectively; S is the
cumulative robot displacement of the ith test set. After calculation, the
model prediction results were displayed in Fig. 5e, f, and Supplemen-
tary Fig. 45, where the ANN-predicted robot location successfully
tracked the real robot trajectorywith high precision. As summarized in
Fig. 5g, the RE and AE values among the five test sets were less than 4%
and 3 cm, respectively. In addition, to establish a benchmark, another
ANN model was trained by using only robot actuation information as
the training data. According to the results in Supplementary Fig. 46
and Fig. 5h, without on-body sensor profiles, the benchmark model
demonstrated a significantlypoorer predictionwith 10 times higher RE
and AE.

Surrounding awareness robot navigation
With the assistance of ML, the sensor-integrated robot was also cap-
able of navigating with surrounding awareness. As shown in Fig. 6a, a
series of 3D-printed hills was introduced within the artificial terrain to
mimic a varying terrain environment. By using the Grasshopper
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software, Fig. 6b, c, and SupplementaryMovie 9 simulated the origami
robot movements when encountering a hill. The changes in distance
between two specified origami folds at the robot head were tracked
(see details in Methods). According to the result in Fig. 6c (iv), com-
pared to the moving forward mode, the change in distance between
the tracked folds during the climbing and descending stages first
decreased and then showed an increasing trend. This change could be
detected by the on-body PCAM sensor. To validate this concept, a
sensor-integrated robot successfully climbed over six hills of different
heights (i.e., 1.5mm, 3.0mm, 4.5mm), as shown in Fig. 6a, d, and
Supplementary Fig. 47. Correspondingly, the recorded sensor profiles
in Fig. 6d showed six distinct plateaus, with different hill heights dis-
tinguishable based on the sensor signal amplitudes (details in Meth-
ods, analyses in Supplementary Table 1).

With the collective sensing data derived from multiple robot
navigations, another ANN model was trained to automatically predict
the altitudeof thepassing terrain (detailedANN framework isprovided
in Methods). Herein, 30 collected data sets were used as the training

data to develop the terrain predictionmodel (see data files in GitHub).
Additionally, two extra test data, as shown in Fig. 6e, f (previously
unseen by the prediction model) were used to evaluate the model
prediction accuracy. Themean relative error (MRE) andmean absolute
error (MAE) between the predicted terrain altitudes and actual altitude
values were calculated in Eqs. 9 and 10, respectively.

MRE =
1
N

XN
i = 1

Hpre � Hreal

��� ���
Hreal

ð9Þ

MAE =
1
N

XN
i = 1

Hpre � Hreal

��� ��� ð10Þ

where N is the hill index in the terrain (N = 1–6); Hpre and Hreal are the
predicted and real height of ith hill, respectively. As evidenced in
Fig. 6e, f, the MRE values on the two test sets were calculated to be 9%
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and 10%, respectively, with corresponding MAE values were 0.2 and
0.3mm, when the predicted and actual altitudes were compared. As
shown in Fig. 6g and Supplementary Movie 10, the terrain altitudes
determined by the ANN model closely aligned to the ground truth
throughout the robot exploration.

Discussion
In this study, as shown in Fig. 7, we develop a computational strain
sensor design that overcomes the stringent demands of predictive
manufacturing, user-specific parameters, and ultra-stable require-
ments based on a programmed crack array within micro-crumples
strategy. By controlling user-defined parameters, namely crack den-
sities and shrinkage ratios, the GF and linear working windows of
PCAM sensors were highly tunable, and their sensing behaviors could
be modelled by FEA tools with high accuracy. The PCAM sensors
exhibited excellent mechanical robustness, under various challenging
operating conditions including noisy, intermittent, and dynamic

operating environments. These sensors can be further integrated into
various soft robots spanning macro-micro scales, maintaining con-
sistent and reliable perception, regardless of the robot scale. Finally,
machine intelligence was realized by introducing ANN algorithm to a
sensor-integrated origami robot, which demonstrated autonomous
robot navigation with high-accuracy trajectory prediction, and sur-
rounding awareness navigation.

This work addresses several longstanding challenges of strain
sensors for soft robots. Firstly, with the computational design
approach, strain sensing curves of target devices could be simulated
by FEA models with high accuracy, which allow virtual verification
without conducting resource and time-consuming experiments. The
modelling approach provides a unified sensor platform that can be
easily customized and extended to improve the interoperability of
robotic systems across various tasks and scales. Conventionally, it is
nearly impossible to predict a tactile sensor performance based on
composition and morphology15,25. Our proposed strategy bridges the
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gap between physical modelling techniques and empirical experi-
mentation, facilitating the predictive design of new strain sensors.
Compared to the state-of-the-art strain sensors17,19–22,24,28,30,31,44,47–55, as
shown in Table 1, our developed PCAM sensors showed advanced
sensor characteristics and sensing curve modelling capability simul-
taneously. More comparisons of the pros and cons between PCAM
sensors and our previous work9 as well as recent self-healing
sensors56–62 were provided in Supplementary Notes 11 and 12.

Secondly, the achievement of ultra-robust sensor represents a
significant milestone in overcoming the mechanical failure under
complex and dynamic working environments of soft robots. The
importance of sensor stability has been highlighted by many review
papers26,63,64, but most sensors cannot sustain the noisy, intermittent,
and dynamic environments that represent the complexity and uncer-
tainty present in real-world working situations of soft robots22,31,34,45. In
this work, by utilizing programmed cracks array within micro-
crumples strategy, our developed PCAM sensors maintain robust
sensing responses under various challenging operating conditions
including noise interruptions (up to 50% strain), intermittent cyclic
loadings (100,000 cycles), and dynamic operation frequencies
(0–23Hz). These robust sensors greatly enhance the perception cap-
ability of integrated soft robots, which provided stable sensing signals
to monitor their high DOF body deformations and multi-modal
actuation behaviors, ensuring high ML learning efficiency when con-
structing the prediction model (see detailed discussion in Supple-
mentary Note 13).

Furthermore, the effective integration of PCAM sensors on soft
robot body constructed high-level machine intelligence on complex
soft crawling robots. For current ML applications on soft robots or
actuators, the applied targets mainly refer to soft gloves65–67 or soft
grippers13,68–70. To capture their motions, there is no doubt to attach
sensors on all gripper or glove fingers. However, for the crawling ori-
gami robots in this work, there are more than 40 possibilities of the
sensor locations, which posed the challenge to capture its high DOF
and multi-modal motions efficiently. To achieve robot autonomy, as
discussed in Supplementary Note 13, a high-resolution sensor network
(optimizing the sensor number and location on the robot body) was
developed to collect themost representative key information of robot
origami motion. As a result, simple ANN framework and less than 40
training samples were sufficient to generate the predictionmodel, and
high-level robot autonomy on soft crawling robot (i.e., robotic trajec-
tory prediction and topography altitude awareness) was successfully
realized (see comparison of recent soft crawling robots in Supple-
mentary Table 2).

For the future perspective, PCAM sensors show high adaptability
to diverse soft robots, from origami to pneumatic, and across scales
from macro to micro. These highly adaptable sensor-integrated soft
machines could be applied in various environments, allowing them to
have augmented perception functions as well as machine intelligence
capabilities. This versatility offers advantages for a wide range of tasks,
such as robots that can operate in confined physical spaces (e.g.,
chemical spills and cargo delivery), navigate unknown environments,
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and enable remote control of untethered robots. Furthermore, more
advanced ML algorithms could be developed to connect and manage
multiple sensor-integrated robots, providing opportunities to achieve
higher swarm intelligence of soft robots.

Methods
Materials
Single-walled carbon nanotubes (SWNT, Timesnano Co. Ltd, China),
sodium dodecyl sulfate (SDS, Sigma-Aldrich, >99.9), ethanol (Thermo
Fisher, >99.5%), silver nanowire (Sigma-Aldrich), and ethyl acetate (J.T.
Baker; 99.9%) were used as received without further purification.
Polyvinylidene fluoride (PVDF) membrane (diameter 3.8 cm, 0.22 µm
pore, Merck Millipore) were purchased from Durapore. Biaxial poly-
styrene shrink filmswere purchased fromGrafix. EcoflexTM andDragon
Skin were purchased from Smooth-On, Inc. Silver paste was purchased
fromTed Pella Inc. Deionized (DI) water (18.2MΩ) was obtained froma
Milli-Q water purification system (Merck Millipore) and used as the
water source throughout the work.

Preparation of SWNT dispersion
The SWNT dispersion was obtained by adding the SWNT powders into
the SDS solution at the mass ratio of SWNT:SDS = 1:20. Then, the
mixture was ultrasonicated for 2 h by a probe sonicator, and the con-
centration of the final SWNT dispersion was about 0.5mgmL–1.

Preparation of freestanding SWNT layer
The as-prepared SWNT dispersion was deposited onto PVDF mem-
branes through vacuum-assisted filtration systems. To remove SDS
residues, the filtered SWNT thin films were rinsed with excessive DI
water. Afterward, freestanding SWNT layers were detached from the
PVDF membranes by immersing them in ethanol. The SWNT layers
were stored in ethanol.

Preparation of interdigital pattern on SWNT layer
A PS shrink film was cut into multiple rectangle-shaped pieces
(5 × 5 cm2), washed with ethanol, and dried under N2

flow. The cut
shrink films were next treated with oxygen plasma for 10min to
enhance the hydrophilic interactions between PS substrates and SWNT
layers. Afterward, the freestanding SWNT layers were carefully trans-
ferred from ethanol onto the plasma-treated shrink films followed by
overnight drying. The SWNT-coated PS device was then put into the
design space of a laser machine. After the setup of laser beam power
(i.e., 0.08mW), user-defined interdigital patterns that consist of the

interlocking comb-shaped crack array were sintered on SWNT-coated
PS device, while the PS substrate was kept integral.

Preparation of PCAM sensor
With the programmed interdigital crack pattern, the SWNT-coated PS
device was heated in an oven at 140 °C to induce thermal contraction.
By harnessing surface instability during thermal contraction, the
SWNT layers were deformed with localized micro-crumples. The
shrunk samples were then coated by a 2mm thick Ecoflex (00–35).
Afterward, it was immersed in an ethyl acetate bath for 24 h to dissolve
the PS substrate. Next, the Ecoflex-coated SWNT device was taken out
followed by air drying and wiring electrical leads to obtain the corre-
sponding PCAM sensor. Silver paste was applied between SWNT layers
and copper wires to ensure good electrical contact. The resistance
profiles of PCAM strain sensors were monitored by the multimeter
Keithley DMM6500.

Preparation of planar sensor
A freestanding SWNT layer was carefully transferred onto a 2mmthick
Ecoflex (00–35) substrate in an ethanol bath followed by overnight
drying. Copper wires were then connected to two ends of the planar
SWNT layer, and silver paste was applied at the connection joints to
ensure good electrical contact.

Preparation of crumpled sensor
A planar SWNT layer was carefully transferred onto the plasma-treated
PS shrink film followed by overnight drying. Afterward, the SWNT-
coated PS device was heated in an oven at 140 °C for 6min without
constraints for biaxial shrinkage. The shrunk sampleswere then coated
by a 2mm thick Ecoflex (00–35). Afterward, it was immersed in an
ethyl acetate bath for 24 h to dissolve the PS substrate. Next, the
Ecoflex-coated SWNT device was taken out followed by air drying and
wiring electrical leads to obtain the corresponding crumpled sensor.

FEA simulation
The 3D models of PCAM sensors were built by using COMSOL Multi-
physics, and their surface characteristics were modeled by the Free-
form feature. Some basic simulation parameters for sensor models
were set as follows: SWNT layer, conductivity 3000 S cm−1, Poisson’s
ratio 0.49, mass density 1.3 g cm−3; Ecoflex substrate, Poisson’s ratio
0.49, mass density 0.9 g cm−3. We want to note that, as listed in Sup-
plementary Table 3, two stickiness factors should be properly chosen
for the modelling tasks: (1) stickiness parameters between two crack

Table 1 | Comparison of the state-of-the-art crack-based soft strain sensors

Article https://doi.org/10.1038/s41467-024-45786-y

Nature Communications |         (2024) 15:1636 11



boundaries, and (2) stickiness parameters between SWNT and Ecoflex
layers. Some methods during simulation are listed as follows: the
contact is modeled based on “penalty formula”; the shear stiffness is
defined using “shear to normal ratio”; the cohesive zone is modeled
based on “displacement-based damage. Cartesian coordinate was
chosen for the mesh method, and the minimal element size was
150 × 150× 100μm. Based on varying ρ and φ values, more modelling
details of different PCAM sensors were provided in Supplementary
Table 4, where the crack number and Young’sModulus of SWNT layers
are the main parameters to model the sensor shape deformation. The
FEA simulation was conducted as shown in Supplementary Fig. 48,
where the left boundary of the 3D model was fixed, and the right
boundary was set to bemovable along x directions. Uniaxial stretching
was simulated by moving the right boundary, and the equivalent
elastic strains and the overall deformation were recorded. Meanwhile,
sensor resistance was simulated and extracted by applying a constant
current on the device and measuring the surface potential changes
between left and right ends of the SWNT layer. The relationship
between current, static electric field and electric potential is calculated
by Eq. 11,

�∇V =E

∇× E=0

∇ � J = 0
J = σE

8>>><
>>>:

ð11Þ

where J is the current density, E is the static electric field, V is the
electric potential and σ is the conductivity. The potential difference
between two boundaries is used to calculate the resistance.

Calculation of material roughness
A roughness value can either be calculated on a profile (line) or on a
surface (area). The profile roughness parameter is more common. In
this work, based on profile data, we adopt arithmetical mean height
(Ra) to quantify the material roughness. As shown in Supplementary
Fig. 49, Ra indicates the average of the absolute value along the sam-
pling length, which is calculated by Eq. 12,

Ra =
1
lr

Z lr

0
Z ðxÞ

���� dx ð12Þ

where lr is the reference line length, x is the location along the profile,
Z(x) is the height distance toward the reference line.

Fabrication and actuation of origami robot
Basedon the crease pattern in Supplementary Fig. 50,multiple origami
units were folded by using cellulose paper. To enhance themechanical
stability of origami structure, these paper origamis were then surface
coated by a thin layer of Ecoflex (00–35) (thickness ca. 0.5mm). As
shown in Supplementary Fig. 51, the Ecoflex-coated origami showed
consistent force-strain curves under 1000 cycles of mechanical strain
loading. Three Ecoflex-coated origami unitswere then assembled as an
origami robot (see Fig. 4a), where two small Nd-Fe-B magnets (dia-
meter, 10mm; thickness, 1mm) were integrated into the head and tail
of robot to serve as magnet responsive units. Under a moving mag-
netic field, as shown in Supplementary Movie 6, the as-fabricated ori-
gami robot was able to make inchworm-like crawling motions. To
realize the robot movement in a repeatable way, we established an
automatic actuation system. As shown in Supplementary Fig. 42, this
system consisted of a robot car, a telescopic rod, and a cubic magnet
(dimension 20mm), enabling the programmable control of a moving
magnetic field in a 3D space including both horizontal and vertical
directions. Supplementary Movies 6 and 9 demonstrated robot
crawling capability (e.g., moving forward/backward, turning left/right,
passing through small hills).

Fabrication and actuation of pneumatic robot
The structure of the pneumatic robot was described in Supplementary
Fig. 25. First, a mold for fabricating an elastomeric tube with one inner
air channel was designed and created by using a 3D printer with
acrylonitrile butadiene styrene (ABS). Second, a highly extensible,
elastomeric material (Ecoflex(0020)) was poured into the 3D-printed
mold. After 5-h curing at room temperature, the molded elastomer
tube was peeled off and covered with a relatively inextensible, com-
pliant, flat elastomeric substrate (Dragon Skin 20). At last, two elas-
tomeric tubes were placed in parallel, which served as left and right
bodies of a soft robot. Two 3D-printed friction feet were installed at
both head and tail of robot body to complete the fabrication of a soft
pneumatic robot. Ecoflex (0035) was used as a glue to assemble all
units together. Meanwhile, in Supplementary Fig. 30, a gas pump-
based pneumatic system was established for automatic robotic
actuation. As shown in Supplementary Movie 7, through the selective
drive of left and right robot body, the pneumatic robot was able to
make inchworm-like crawling motions (e.g., moving forward, turning
left/right).

Fabrication and actuation of tetrapod microrobot
First, as shown in Fig. 4g, small-sized interdigital patterns (dimension,
2mm) were programmed on SWNT-coated PS devices through the
laser machine. Single interdigital pattern was cut out and heated in an
oven at 140 °C for 6min to induce the thermal contraction. The shrunk
sample was then coated by a (Nd-Fe-B)-contained Ecoflex, which was
obtained by mixing 10 wt% Nd-Fe-B particles (diameter, ~5μm) with
Ecoflex (0035).After crosslink, it was immersed in an ethyl acetate bath
for 24 h to dissolve the PS substrate. Then, the (Nd-Fe-B)-Ecoflex-
coated SWNT device was taken out followed by air drying to serve as a
tetrapod microrobot (length/width, 700 µm). The tetrapod micro-
robot was put into the space between two electromagnets with high
field uniformity (at 1.2 T; EM4-HVA-S, Lake Shore Cryotronics), which
induced the magnetic orientations inside the tetrapods (Supplemen-
tary Fig. 39). The tetrapod microrobot was able to undergo reversible
shape/body transformation under magnetic actuation and its resis-
tance profile was monitored by the multimeter Keithley DMM6500.

Tracking of origami robot location in the artificial terrain
In this work, we used an open-sourced software of “Tracker” to track
and analyze the robotic location. First, one set of videos that recorded
robotic movements in the artificial terrain was collected by a camera
(see the setup in Supplementary Fig. 44). Afterward, these videos were
inserted into the “Tracker” software. As shown in Supplementary
Fig. 52, “Tracker” could realize automated object tracking with posi-
tion and velocity, then save/output the data. Detailed tutorials about
Tracker are provided at the website: https://physlets.org/tracker/”.

Modelling of origami robot
The modelling of the origami robot is performed by the software of
Grasshopper. Kangaroo, a Grasshopper plugin, provides an array of
physics simulation tools for Rhino 3D modelling software, including
soft body physics, rigid body dynamics, and particle simulations71. In
this study, we utilized the Kangaroo setup in Supplementary Fig. 53 to
simulate the proposed origami structure’s deformations. The simula-
tion integrates structural mechanics and electromagnetics to create a
multiphysics simulation that accuratelymodels the origami structure’s
motions. Basedon the simulatedorigamimotion, thedistancechanges
between designated origami folds are extracted to reflect robot body
deformations during actuation.

Dataset collection for robotic trajectory prediction model
First, training data consisted of independent and dependent variables.
In this work, independent variables containedmulti-channelled sensor
data as well as robot actuation information, while the dependent
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variable was the robot trajectory (i.e., real-time robot location in the
terrain). Herein, the sensor data was recorded by the multimeter
Keithley DMM6500, and robot actuation information was extracted
from robot control station, while robot trajectory was recorded a
camera system (see Supplementary Fig. 44), which was further
extracted using a “Tracker” program. With the setup in Fig. 5b, the
sensor-integrated origami robot was placed in an artificial terrain to
execute different trajectories, including 7modes: (1)moving forwardN
steps; (2) moving forward N steps then meeting an obstacle with N
steps; (3)moving forwardN steps then turning leftN steps (meeting an
obstacle with N steps or not); (4) moving forward N steps then turning
right N steps (meeting an obstacle with N steps or not); (5) moving
forward N steps then moving backward N steps; (6) moving forward N
steps thenmoving backwardN steps then turning leftN steps (meeting
an obstacle with N steps or not); (7) moving forward N steps then
moving backward N steps then turning right N steps (meeting an
obstacle with N steps or not). By randomly setting different N values,
we collected 43 datasets whichwere not repeated. As shown in Fig. 5d,
we selected 5 datasets with representative trajectories as testing
datasets and took other 38 datasets as training datasets.

Dataset collection for terrain prediction model
First, training data consisted of independent and dependent variables.
In this work, independent variable was on-body sensor data, and the
dependent variables were the robotic trajectory (i.e., real-time robot
location) as well as the terrain information (i.e., terrain altitude chan-
ges along the robotic trajectory). Herein, the sensor data was recorded
by the multimeter Keithley DMM6500, and robot trajectory was
recorded a camera system (see Supplementary Fig. 44) which was
further extracted using a “Tracker” program, and the terrain consisted
of 6 different small hills (2 hills with 1.5mm height, 2 hills with 3.0mm
height, 2 hills with 4.5mm height) and their distribution information
was recorded by the researchers. With the setup in Fig. 5a, a sensor-
integrated origami robot was placed in the artificial terrain to climb
over 6 hills with different combinations, such as 1.5-3.0-1.5−4.5-3.0-4.5,
4.5-3.0-1.5-4.5-3.0-1.5, and so on. By randomly setting different hill
combinations, we collected 32 datasets which were not repeated. As
shown in Fig. 6e, we selected 2 datasets with representative hill dis-
tributions as testing datasets and took other 30 datasets as training
datasets.

ANN model for robotic trajectory prediction
As shown in Supplementary Fig. 54, the ANNmodel is constructed by a
bunch of neuron base units with learning parameters (e.g., w12, w15).
Similar to other supervised ML algorithms, ANN model aims to use a
set of training data to predict an output based on the inputs. In this
study, the inputs are the multi-channeled PCAM sensor data as well as
the actuation information, and the outputs are the predicted x and y
locations in the terrain in time series. The entire network consisted of 4
fully-connected layers, which were serialized by adding an activation
function, Relu, and a Batch Normalization layer, in between each
adjacent layer. Themean squared errors between the predicted values
and the ground truth values were utilized as themodel’s loss function.
A 10-fold cross-validation training strategy was adopted during the
training of the ANNmodel. The optimization process of k-fold value in
this ML task was discussed in Supplementary Note 14. Afterward, a set
of test data was used to evaluate the prediction accuracy of the trained
ANN model. The source code of the ANN model was implemented in
Python using the Keras and TensorFlow frameworks, which is publicly
available on GitHub (https://github.com/SS47816/strain_sensor_
prediction).

ANN model for terrain altitude prediction
For this task, the inputs are the PCAM sensor data, and the outputs are
the predicted terrain altitudes in time series. Similar to the network

model used in the previous trajectory prediction task, a network
consisting of 4 fully-connected layers, with Relu activation function
and Batch Normalization layer in between was trained and tested for
the altitude prediction. The mean squared errors between the pre-
dicted values and the ground truth values were utilized as the model’s
loss function. A 10-fold cross-validation training strategy was also
adopted during the training of the ANNmodel. Afterward, a set of test
data was used to evaluate the prediction accuracy of the trained ANN
model. The source code of the ANNmodel was implemented in Python
using the Keras and TensorFlow frameworks, which is publicly avail-
able on GitHub (https://github.com/SS47816/strain_sensor_
prediction).

Data smoothing by adjacent-averaging method
The smoothingmethod used in this study is adjacent-averaging, where
each smoothed data point is computed from the data points within a
moving window. For example, let f i,j,i= 1,2, . . . ,N

� �
be the input data

points and let gi,j,i= 1,2, . . . ,N
� �

denote the output data points. Then,
each gi is computed by Eq. 13,

gi =
1
m

Xi +m=2

i�m=2

f i ð13Þ

where m is the value of the Points of Window variable (m = 100 in
this work).

Characterization and measurements
The surface morphologies of SWNT layers were characterized by
using a SEM (FESEM, JEOL FEG JSM 7001 F). Atomic forcemicroscope
(AFM) images of SWNT layers were collected on a commercial
scanning probe microscope (SPM) instrument (MFP-3D, Asylum
Research, CA, USA). Optical microscope images were captured by an
Olympus BX53M microscope. The characteristic dimension changes
of PS shrink films were quantified by using ImageJ. The tensile strain-
stress tests were implemented using the tensilemachine (MultiTest 1-
i) with a 5-N load cell. The multi-channeled resistance profiles of
robotic sensors were monitored by the multimeter Keithley
DMM6500.

Data availability
The data generated in this study are provided in the Supporting
Information/Source Data file. Sensor data files for model training and
testing generated in this study have been deposited in the public
GitHub (https://github.com/Haitao008/Supporting-Materials) without
any restrictions. The data that support the plots within this paper and
other findings of this study are available from the corresponding
authors upon request. Source data are provided with this paper.

Code availability
The Pythoncode to implement themachine learning tasks in this study
has been deposited in the public GitHub (https://github.com/SS47816/
strain_sensor_prediction) and Zenodo (https://doi.org/10.5281/
zenodo.10464057)72 without any restrictions.
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