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Abstract

Although transition metal phosphide electrocatalysts display unique electronic

structure that serves as functional centers for hydrogen evolution reaction, the

synthesis of this class of materials for oxygen evolution remains a challenge

due to the complex multielectron transfer pathways and sluggish reaction

kinetics. This study details an in-situ modification and transformation of

cyanide-bridged nickel-iron (CN-NiFe) organometallic hybrid into the prefer-

ential Fe2P phase with prevailing exposed 120
� �

faceted active centers by

leveraging on the facile coordinate cleavage dynamics and compound reactivity

of labile metal organic coordination frameworks. The resultant transition

metal phosphide attains high electrochemical surface area, low Tafel slope,

and low overpotential for the oxygen evolution reaction, while also demon-

strating bifunctional electrocatalytic performance for overall water splitting.

Comprehensive experimental studies and density functional theory calcula-

tions reveal that the exceptional catalytic activity originates from the transfor-

mation of framework metallic sites into preferential active sites allows an

optimal adsorption of oxygen evolution reaction intermediates.
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1 | INTRODUCTION

Water splitting offers a promising and sustainable solu-
tion to alleviate future global energy demands for afford-
able and reliable energy generation and storage, such as
through hydrogen production, rechargeable metal-air
batteries, and fuel cells.1–4 Thermodynamically, under
standard conditions, water splitting is an endergonic
reaction requiring an activation energy of 286 kJ mol�1,
which is achievable via electrolysis. Unfortunately, to
attain appreciable current densities after reaction activa-
tion, high overpotentials are generally needed due to the
sluggish half-cell reaction kinetics, namely, the hydrogen
evolution reaction (HER) and the oxygen evolution reac-
tion (OER).5–8 Although noble metals exhibit unrivaled
catalytic performances as benchmark water-splitting elec-
trocatalysts (IrO2 for OER and Pt for HER), their low
abundance and high cost greatly hinder large-scale appli-
cations.9,10 Besides, it can also be challenging and costly
to pair two different monofunctional catalysts as the
anodic and cathodic half-cells to form an integrated
water-splitting cell. Hence, though challenging, it is
highly important to rationally design non-precious and
highly active bifunctional electrocatalysts.

Considerable progress has been achieved in the last
decade to explore promising alternative nonprecious
HER and OER electrocatalysts including transition metal
oxides/hydroxides,11,12 sulfides,11,13–15 phosphides,14,16,17

selenides,13,18 nitrides,19,20 carbides,21,22 and borides.22

Among them, transition metal phosphides (TMPs) have
been widely explored as HER catalysts owing to the
resemblance of their electronic structure to hydrogenases,
which are highly active H2 generating enzymes, and their
promising catalytic performances toward the hydrodesul-
furization reaction.23,24 Using detailed molecular calcula-
tions, the superb catalytic performance of TMPs toward
HER has been ascribed to the ensemble effect that allows
a moderate hydrogen binding environment on active sites
due to the direct involvement of phosphorous in the reac-
tion. In addition, the decreased poisoning effect of the
metallic species creates favorable proton-acceptor (phos-
phorus) and hydride-acceptor (metal) sites.23,24 However,
compared to HER, OER has been the bottleneck because
of the multielectron transfer pathways and complex reac-
tion steps involving successive formation of three differ-
ent adsorption intermediates (OOH*, O*, and OH*).

Nevertheless, prominent improvement in OER activ-
ity can be realized via atomic engineering since the crys-
tallographic orientations, coordination number of atoms
and number of dangling bonds greatly affect the catalytic
reactivity of nanocrystals.25,26 Essentially, highly active
sites generally transpire in a local environment and ori-
entation in the form of high surface energy facets.

Nanocrystals meticulously elaborated by such active facets
with favorable electronic structure can ensure thermody-
namically and kinetically favorable surface adsorption and
reaction, which warrants an utmost exploitation of the cat-
alytic activity. However, typical nanocrystals are generally
enclosed by diverse crystal planes, exposing different facets
with dissimilar activities, and thereby reducing the overall
electrocatalytic activity. Moreover, although creating highly
reactive facets is a particularly enticing route for designing
advanced electrocatalysts, they are difficult to be preserved
as a result of these same high surface energies. Thus, the
development of reliable and ingenious surface structural
approaches to create a selective favorable surface atomic
arrangement is an exciting breakthrough and fundamen-
tally important to exploring new active and stable facets for
high performing electrocatalysis. Specifically, rational syn-
thesis of transition metal phosphides to explore and reveal
the aforementioned surface atomic features that are benefi-
cial for OER have not been well-explored thus far, despite
the great progress achieved in investigating their HER
activities.

Here, we devise a controllable reductive alkaline etch-
ing strategy to modify the framework chemistry and reac-
tivity in the metal–organic coordination network of
Prussian blue analogues (PBAs) by exploiting the lability
of metal centers and metal–ligand bonds. The as-etched
classical crystals of PBAs are conceived to comprise the
original synergistic organometallic hybrid, that is, inor-
ganic superstructures with atomically coordinated
organic cyanide (CN) bridges in congruence with altered
coordinate cleavage dynamics and compound reactivity.
Based on the refined framework chemistry, bimetallic
transition metal content and weak intramolecular bonds,
we formulated a non-destructive phosphorization and
preferential manifestation of a transition metal phos-
phide phase with predominantly active facets. Signifi-
cantly, unlike the pristine PBAs that susceptibly
reconstitute a variant of planes after phosphorization
because of the comparable reactivity of its transition
metal sites, the refined as-etched PBAs readily transform
into a favorable phosphide phase with prevailing reactive
centers. Explicitly, for the first time, we disclose a facile
and efficient strategy to prepare the Fe2P phase with pri-
marily exposed 120

� �
facets that we prove to possess

high OER activity, using proof-of-concept electrochemi-
cal tests and theoretical studies. Notably, using this meth-
odology, it is possible to judiciously engineer similar
iron-containing PBAs into iron phosphides with the same
exposed active facets. Thus, the in-situ tailoring of the
atomic bonding and crystal structure to synthetically
modify phosphides and consequently unravel prominent
OER active sites; can be recognized as a pioneering strat-
egy for the design of new advanced OER electrocatalysts.
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2 | RESULTS AND DISCUSSION

A template-engaged strategy is employed to prepare
nickel-iron phosphide nanocrystals with primarily
exposed high-index 120

� �
facets of iron phosphide. The

preparation of nickel-iron phosphide includes three suc-
cessive steps: (i) preparation of self-sacrificial templates,
(ii) etching and (iii) phosphorization (Figure S1). Essen-
tially, classical crystals of nickel-iron (Ni Fe) PBAs are
selected as the self-sacrificial templates due to their
location-dependent etching stability, robustness, low-
degree of defects, high-degree of lability, favorable
dynamic framework and bimetallic transition metal con-
tent.27,28 In this study, the self-sacrificial templates mani-
fest sufficiently strong chemical stability to allow a
kinetically controlled chemical etching process while
being prone to changes in the microstructural features.
In addition, it remains structurally intact during the
phosphorization step at high temperatures. The PBAs
are first synthesized via a facile coprecipitation process

in an aqueous solution containing K3Fe(CN)6 and
Ni(NO3)2�6H2O.

29 The morphology of the as-synthesized
PBAs are investigated by field-emission scanning electron
microscopy (FESEM) and transmission electron micros-
copy (TEM) as shown in Figure 1A and D, respectively.
The PBAs exhibit uniform cubic structure and a narrow
size distribution with an average particle size of 180 nm
(Figures S2–S3). The flat external faces and edges of the
nanocubes, as revealed by TEM, suggests the formation
of NiFe-PBAs nanocubes through the classical ionic/
molecular crystallization pathway. This signifies the
absence of mesocrystalline features dominated by clus-
tered subunits that are formed by oriented crystallo-
graphic fusion of primary nanocrystal building units.
Although mesocrystals and classical crystals of PBAs
show identical single-crystal features, mesocrystals pos-
sess much weaker stability due to a void-rich, mostly
defective structure with discontinuous and broken grain
boundaries, which makes a chemical etching process dif-
ficult to control. Here, the compact and less-defective

FIGURE 1 Morphological and structural characterizations of the Prussian blue analogues (PBAs) and etched-PBAs. Scanning electron

microscopy (SEM) images of the (A) PBAs, (B) corner-etched PBAs, and (C) cross-PBAs. The scale bar shows 100 nm. Transmission electron

microscopy (TEM) images of the (D) PBAs, (E) corner-etched PBAs, and (F) cross-PBAs. The scale bar shows 50 nm. (G) SEM image shows

the uniform and preferential etching of PBAs. (H) Schematics illustrating the structural evolution of the cross-shaped PBAs from PBA

nanocubes. t1 and t2 represent 3 and 6 h, respectively, the time required for the formation of the structures. (I) Corresponding X-ray

diffraction (XRD) profiles of the structures.
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NiFe-PBAs crystals permit the gradual development of
corner-etched PBAs (Figure 1B, E) and finally cross-PBAs
(Figure 1C, F) through the chemical etching process
(Figures S1 and S2). The etching on PBAs is observed to
be appreciably uniform and occurs preferentially on the
corners and edges that possess high-surface energy and
more reactivity (Figure 1G). Figure 1H illustrates the
structural evolution of the cross-shaped PBAs from PBAs
nanocubes at 3 and 6 h, respectively. The average particle
sizes of the corner-etched PBAs (166 nm) and cross-PBAs
(163 nm) do not change significantly (Figures S3–S7),
indicating low etching activity on the 100f g planes of the
PBAs. The selective etching of the corners and edges of
the PBAs is attained by a kinetically controllable alkaline
etching approach (Figure S8). By adding potassium
hydroxide (KOH) and trisodium citrate (Na3Cit) to a sus-
pension of PBAs, corner-etched PBAs and cross-PBAs are
obtained after 3 and 6 h, respectively, at room tempera-
ture. The structural evolution of PBAs is kinetically driven
by cooperative engraving of the etching components. Basi-
cally, treatment of PBAs with Na3Cit in the absence of
KOH does not alter the size and morphology of the PBAs,
while etching takes place rather slowly when the PBAs are
treated using KOH without Na3Cit (Figure S8). In particu-
lar, KOH alone slightly carves the edges and corners of the
cubes revealing the regions less stable in alkaline solution,
as also demonstrated in previous studies.30,31 At the same
regions, the etching rate of KOH can be effectively trig-
gered by adding Na3Cit, a well-known complexing agent
which can directly coordinate to various transition metal
sites.32–34 In this process, we postulate that while the alka-
line etching proceeds through to cleave the labile
NiII [FeII/III(CN)6] complex in the framework, citrate mol-
ecules quickly interact with the nickel in the disassembled
framework. This weakens the coordination strength of the
cyanide ligand in the as-formed hemilabile PBAs due to
the formation of a stronger metal-carboxylate π-bonding,
and thus allows a facile subsequent alkaline etching
process.35–37 Moreover, the relative amounts of the KOH
and Na3Cit is a crucial factor determining the kinetics of
the etching. If either etchant component participates at low
concentration, etching takes place rather slowly, producing
cubes with poorly defined cavities (Figure S9). In contrast,
when the concentration of either etchant is high, broken
particles are obtained (Figure S9). This phenomenon shows
that controllable etching depends on a balanced citrate
coordination-alkaline carving process. Similarly, PBAs can
be etched using an equivalent concentration of NaOH as
an alternative to KOH, affirming the generalization of the
citrate coordination-alkaline carving process (Figure S10).

The effect of etching treatment on the microstructural
bonding properties of the PBAs is examined by Fourier
transform infrared spectroscopy (FTIR) and shown in

Figure S11A. The FTIR spectrum of PBAs exhibits two
prominent peaks at 2165 and 2099 cm�1 originating from
the stretching vibrations of FeIII CN NiII and
FeII CN NiII, respectively.38 As compared with the pris-
tine PBAs, the corner etched-PBAs shows only one sharp
stretching band at a wavenumber of 2092 cm�1, indicat-
ing the sole presence of FeII CN NiII in the etched
structures. Notably, there occurs a slight shift in the origi-
nal FeII CN NiII peak position, which is related to the
additional potassium ions introduced to the interstitial
sites (Figure S11B) to maintain the electroneutrality of
the structure during the reductive etching process.39

Here, the FTIR study clearly reveals that etching treat-
ment reduces the oxidation state of Fe in PBAs from FeIII

to FeII. Moreover, X-ray photoelectron spectroscopy
(XPS) investigation for the Fe 2p region of PBAs and
corner-etched PBAs also confirms the reduction of the
iron oxidation state after the etching process
(Figure S12). The crystal structure and phase purity of
the PBAs and the etched products are examined by X-ray
diffraction (XRD) as shown in Figure 1I. Both PBAs and
etched PBAs (corner-etched PBAs and cross-PBAs)
exhibit sharp and strong peaks with similar XRD patterns
with slightly different lattice parameters (10.29 and
10.37 Å, respectively), showing that the pure face-
centered cubic phase of nickel-iron PBAs (JCPDS card
no. 86-0501) is mostly retained during the etching treat-
ment. The change in lattice parameter can be attributed
to the increase in the radius of CN-coordinated iron dur-
ing their reduction from iron (III) to the iron (II), and to
an increase in the number of potassium ions.40,41 More-
over, the absence of a hydroxide phase in the XRD pat-
terns of the etched products eliminates the possibility of
an ion exchange reaction between the hydroxide ions
with the PBAs.42

The PBAs-P, corner-etched PBAs-P and cross-PBAs-P
are converted from the as-obtained nickel iron PBA coor-
dination networks via the decomposition of a phospho-
rous source, NaH2PO2, at 300�C in argon atmosphere,
and its reaction with the PBAs, corner-etched PBAs and
cross-PBAs, respectively. SEM images in Figures 2A and
S13 show the non-destructiveness of the phosphorization
treatment under the selected reaction conditions by vir-
tue of the kinetically labile metal–ligand linking-
breakage of the coordination compound. Further SEM
(Figure 2A) and TEM (Figure 2B) investigations of the
corner-etched PBAs-P also reveal that the morphology of
the corner-etched PBA precursors is well-retained during
the phosphorization treatment. The presence of Fe, Ni,
and P elements and their homogeneous distribution in
the products are confirmed by the scanning transmission
electron microscopy-electron energy loss spectroscopy
(STEM-EELS) elemental mapping as shown in
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Figure 2C–F. In addition, energy dispersive X-ray spec-
troscopy (EDX) and XPS further corroborate the presence
of Ni, Fe, and P elements as well as carbon and nitrogen
in the corner-etched PBAs-P (Figure S14).

To investigate the extent of topological transforma-
tion of the PBA coordination compound into a phosphide
phase and examine the nature of the carbon in the
corner-etched PBAs-P, Raman spectroscopy, XRD and
high-resolution XPS are carried out. The Raman spec-
trum of the corner-etched PBAs in Figure 2G displays
two distinct peaks at 2100 and 2143 cm�1, which are
assigned to the stretching vibration of FeII-coordinated
carbon nitrogen.43 On the other hand, in the spectrum of
corner-etched PBAs-P, no obvious cyanide bands are
detected, supporting the complete decomposition of the
carbon-nitrogen coordination. The bands displayed at
1350 and 1583 cm�1 indicate the typical D- and G-bands,

respectively,44,45 which, in conjunction with XPS and
EDX, suggests the emergence of graphitic properties of
N-doped-carbon with the phosphorization treatment. The
crystal structures of the phosphorization products are
analyzed using XRD (Figure 2H). The XRD profiles of the
products clearly reveal the disappearance of the NiFe-
PBA phase (Figure 1I) and formation of new crystal
phases, further confirming the synergistic efficacy of the
phosphorization treatment and favorable dynamics of the
Ni-Fe coordination network. The XRD pattern of PBAs-P
can be indexed to be a mixture of Ni5P4 (JCPDS
no. 18-0883) and Fe2P (JCPDS no. 88-1803) phases, with
Ni5P4 as the major component.46,47 Although the XRD
spectra of corner-etched PBAs-P and cross-PBAs-P also
display the diffraction features of the mixed Ni5P4 and
Fe2P phases, the Fe2P phase emerges as the major com-
ponent. Importantly, different from the XRD pattern of

FIGURE 2 Morphological and structural characterizations of the corner-etched PBAs-P. (A) Scanning electron microscopy (SEM) and

(B) Transmission electron microscopy (TEM) image of corner-etched PBAs-P. (C) TEM image of a corner-etched PBA-P nanoparticle, and

the corresponding STEM-EELS elemental mapping of (D) iron, (E) nickel and (F) phosphorus elements. (G) Raman spectrum and (H) X-ray

diffraction (XRD) patterns of the corner-etched PBAs-P. High-resolution (I) Fe 2p, (J) Ni 2p and (K) P 2p XPS spectra of the corner-etched

PBAs-P.
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PBAs-P, two additional characteristic peaks occur at
17.6� and 25.4�, corresponding to the (100) and (001)
crystal planes of hexagonal Fe2P. This activation of the
iron phosphide phase in the etched-structures can be elu-
cidated by the modification of the framework chemistry.

The coordination stability of the metallic components
and cyanide ligand modified in the course of the initial
PBA etching process eventually affects the bond-breaking
dynamics and reactivity of the components during the
final phosphorization treatment. Particularly, metal–
ligand bond strength in cyanide coordinated frameworks
is directly affected by the oxidation states of the
metals.36,37,48 As FeIII CN exhibits larger metal-carbon
and carbon-nitrogen force constants (strengths) than
FeII CN, since it experiences a stronger metal-carbon
σ-bond and CN bond.36,37,48 This relative weakness of the
coordinate bond in the etched samples that contain
FeII CN, allows the readily cleavage of Fe C and C N
linker bonds and a kinetically facile reaction of iron with
phosphorus. Therefore, the Fe2P crystal phase actively
develops in corner-etched PBAs-P and cross-PBAs-P,
whereas the Ni5P4 crystal structure occurs as the major
component in PBAs-P. Similarly, by using the devised
method, we also modified the crystalline properties of
cobalt-iron PBAs to disclose the Fe2P crystal planes
(Figures S15–S16). The oxidation state of the iron in the
cobalt-iron PBAs was completely reduced to 2+ from 3+
by the same etching treatment, and the as-etched mate-
rial was subsequently converted to a mixture of Fe2P and
CoP crystal phases, with Fe2P as the major component.
This indicates the adaptability of the approach, which is
highly significant considering the large diversity of bime-
tallic iron-based PBAs.

X-ray photoelectron spectroscopy measurements are
further carried out to probe the surface composition and
the oxidation state of the phosphide products as shown in
Figures 2I–K and S17. The high-resolution Fe 2p spec-
trum in Figure 2I shows two peaks, at 707.5 and 711.0 eV
located in the Fe 2p3/2 region, whereas the Fe 2p1/2
region consists of two peaks at 720.0 and 724.5 eV, along
with a satellite peak. The peaks at 707.5 and 720.0 eV are
assigned to binding energies of Fe2P, and the other peaks
can be attributed to oxide binding energies due to superfi-
cial surface oxidation of phosphides.49,50 In the Ni 2p
spectrum of corner-etched PBAs-P (Figure 2J), the two
peaks at 852.6 and 870.2 eV correspond to the Ni 2p3/2
and Ni 2p1/2 energy levels of Ni5P4, respectively. Mean-
while, the peaks located at 857.3 and 875.4 eV, which are
accompanied by a satellite peaks, are consistent with oxi-
dized Ni species.47,51 The high-resolution P 2p spectrum
in Figure 2K is deconvoluted into two peaks, located at
129.2 and 129.9 eV, corresponding to the P 2p3/2 and P
2p1/2 binding energies of reduced phosphorous in metal

phosphides. Moreover, the peak occurring at 133.5 eV
reflects the P O bonding (P5+) on the surface, which
explains the conspicuous oxygen peak observed in the
XPS survey scan.47,50,52 Noticeably, the binding energies
of nickel and iron are positively shifted compared to
those of metallic nickel (852.5 eV) and iron (706.7 eV),
while the binding energy of the measured phosphorus
peak is lower than that of elemental phosphorus
(130.1 eV). This indicates the partial positive charge of
nickel and iron, and partial negative charge of phospho-
rus in the phosphorization products, confirming the for-
mation of a bimetallic phosphide phase.

The electrocatalytic OER activities of the PBAs com-
pounds and their phosphorization products are investi-
gated in 1 M KOH aqueous electrolyte. Figure 3A shows
the polarization curves of the PBAs, corner-etched PBAs,
cross-PBAs, PBAs-P, corner-etched PBAs-P and cross-
PBAs-P obtained by linear sweep voltammetry (LSV) at a
scan rate of 5 mV s�1 in the potential window of 1.2–
1.85 V (vs. RHE). Compared to PBAs and etched PBAs
(corner-etched PBAs and cross-PBAs), which are pre-
sented by dashed-lines, their phosphide derivatives (solid
lines) exhibit greatly improved OER activities, demon-
strating that the phosphorization treatment effectively
modulates the electrocatalytic inertness of PBA com-
pounds and elaborates the final crystal structure with
highly exposed active sites. Among the phosphide deriva-
tives, the corner-etched PBAs-P shows the best perfor-
mance, with a small onset oxidation potential of 1.46 V
and an overpotential of 260 mV at the anodic current
density of 10 mA cm�2. Notably, it only requires overpo-
tentials of 310 and 350 mV to reach the current densities
of 50 and 100 mA cm�2, respectively. Comparatively, to
attain 10 mA cm�2, cross-PBAs-P, PBAs-P, corner-etched
PBAs, cross-PBAs and PBAs require relatively higher
overpotentials of 300, 314, 384, 390, and 397 mV, respec-
tively (Table S1). The electrochemical OER kinetics of
the catalysts is assessed by the Tafel slopes obtained from
the Tafel plots (Figure 3B). The Tafel slope of corner-
etched PBAs-P is measured to be 45 mV dec�1, which is
superior to that of cross-PBAs-P (51 mV dec�1) and
PBAs-P (57 mV dec�1), and significantly lower than that
of PBAs and etched PBAs, revealing the favorable OER
kinetics of corner-etched PBAs-P. Figure 3C explicitly
presents the Tafel slope-overpotential (at 10 mA cm�2)
relation of PBAs and their phosphide counterparts. The
phosphides are located at a low Tafel slope-low overpo-
tential region, which confirms the prominent activation
of the PBAs with phosphorization treatment. Particularly,
better electrocatalytic OER performances of the corner-
etched PBAs-P and cross-PBAs-P than that of PBAs-P
reveals the further emergence of the catalytically active
sites and enhancement of the intrinsic OER activity via
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the etching treatment. Specifically, the corner-etched
PBAs-P, which showed the lowest overpotentials, had
exhibited a mass activity of 27.3 A g�1 and a high turn-
over frequency (TOF) of 3.18 s�1 at 350 mV overpotential
(Figure S18). The electrochemical active surface area
(ECSA) further serves as another relevant measure for an
assessment of the catalytic activity. The ECSA values are
obtained from the cyclic voltammograms of the PBAs-P,
corner-etched PBAs-P and cross-PBAs-P collected at vari-
ous scan rates (10–100 mV s�1) (Figures S19 and 3D).
Corner-etched PBAs-P and cross-PBAs-P possess ECSA
values of 19.1 and 7.5 mF cm�2, which are 3.5 and 1.4
times higher than that of the PBAs-P, respectively. This
clearly supports the enriched catalytically active sites in
the etched-phosphides.

Nyquist plots obtained from the electrochemical
impedance spectroscopy (EIS) tests are shown in
Figure 3E. The phosphide derivatives exhibit smaller
semicircles compared to the pristine counterparts, thus
they possess smaller charge transfer resistances. This can
be ascribed to the realization of more favorable charge
transport kinetics with the in-situ generation of N-doped-
graphitic carbon during the high temperature

phosphorization treatment as shown in Figure 2G. More-
over, the long-term electrochemical stability of PBAs-P,
corner-etched PBAs-P and cross-PBAs-P electrocatalysts
is examined by chronopotentiometric measurements by
applying consecutive constant current densities of 10, 20,
and 10 mA cm�2, and investigating the changes between
the initial and resulting potentials during 45 h of continu-
ous OER operation. As presented in Figure 3F, in gen-
eral, PBAs-P, corner-etched PBAs-P and cross-PBAs-P
show negligible voltage degradation after 45 h. Notably,
after the second 15 h of operation at the higher current
density of 20 mA cm�2, the electrocatalysts could deliver
the same potential at 10 mA cm�2 as the initial potential
delivered after 1 h, implying their outstanding electro-
chemical stability.

To gain insight into the enhanced electrochemical
activity of the corner-etched PBAs-P, the crystalline
nanostructures are investigated by high-resolution TEM
(HR-TEM) measurements. Typical TEM images of the
corner-etched PBAs-P are given in Figures 4A and S20,
showing the homogeneity of the nanoparticles with sharp
edges, corners and well-defined faces. HRTEM images
taken from the regions A, B, C, and D are presented in

FIGURE 3 Electrocatalytic oxygen evolution reaction (OER) performance of pristine Prussian blue analogue (PBA) compounds and

their phosphorization products. (A) OER polarization curves recorded at a scan rate of 5 mV s�1 in 1 M KOH. (B) Corresponding Tafel plots

of the electrocatalysts in (A). (C) Tafel slopes against overpotentials at a current density of 10 mA cm�2. (D) Estimation of double layer

capacitances of PBAs-P, corner-etched PBAs-P and cross-PBAs-P using the capacitive current densities at 0.7 V (vs. RHE) as a function of

scan rates. (E) Nyquist plots. (F) Time dependence of the voltage under static current densities of 10 and 20 mA cm�2 over 45 h of

continuous operation.
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Figure 4B, C, D, and E, respectively. Strikingly, the
corner-etched PBAs-P are enclosed with two neighboring
(100) and (001) facets of Fe2P with interlayer spacings of
0.49 and 0.36 nm, respectively, separated by an interfacial
angle of approximately 90� (Figure S21), consistent with
the observations in the XRD studies in Figure 2H. This
suggests that the primarily exposed facet of the corner-
etched PBAs-P is 120

� �
(Figure S22), which is further

confirmed by the fast Fourier transform image (Figure 4B
inset). In comparison, for pristine PBAs that did not
undergo chemical etching, HRTEM images of their phos-
phorization product (PBAs-P) show an assortment of
planes in random orientations (Figure S23). Moreover, it
was noted that even after long-term OER testing, the
neighboring (100) and (001) planes were still clearly visi-
ble in the HRTEM images of the corner-etched PBAs-P,
suggesting good stability of the exposed facet, and further
substantiates the electrochemical stability of corner-
etched PBAs-P (Figure S24). Figure 4F presents the

atomic arrangement of the etched PBA structures before
and after the phosphorization process to illustrate etched
PBAs with the two enclosed adjacent (100) and (001)
facets of Fe2P.

To understand the compositional dependent OER
activity of nickel-iron phosphides, where corner-etched
PBAs-P (major component: Fe2P) is much superior to
PBAs-P (major component: Ni5P4), density functional
theory (DFT) calculations were performed. Previous
experimental and theoretical reports have confirmed that
the adsorption of oxygenated intermediates (especially
*OH) is the rate-determining step in OER for metal
phosphides.53–55 The optimization of *OH adsorption on
metal phosphides is thus critical for the rational design of
high-performance OER catalysts.55 Therefore, we calcu-
lated the *OH adsorption energies on the surfaces of Fe2P
and Ni5P4 (Figure 5A, B). The Fe2P 120

� �
facet is chosen

since it is primarily exposed in the corner-etched PBAs-P
(Figures 4 and 5A). It is found that all of the surface Fe

FIGURE 4 High-resolution transmission electron microscopy (HR-TEM) characterizations of the corner-etched PBAs-P (A) TEM image

of a corner-etched PBA-P nanoparticle and high-resolution TEM images from (B) region A, (C) region B, (D) region C, and (E) region D. (F)

Atomic representation of the etched PBA structures before and after the phosphorization process.
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sites are unable to stabilize the *OH adsorbate. Upon
structural relaxations, the *OH adsorbate will migrate to
the surface phosphorus sites, implying that the latter are
the active adsorption sites. Figure 5C shows the calcu-
lated *OH adsorption energy on distinct phosphorous
sites (marked in Figure 5A). Site P1 is the favorable
adsorption site with an adsorption energy of �0.030 eV,
whereas at the P2 site it is 0.316 eV. This value is compa-
rable to �0.058 eV that was previously calculated for
strained FeP2.

55 Next, the adsorption energy of *OH on
the same facet of Ni5P4 was calculated for comparison
(Figure 5B). As shown in Figure 5D, the most stable *OH
adsorption takes place on the site P4 with an adsorption
energy of �0.765 eV, such a negative adsorption energy
however suggests that Ni5P4 adsorbs *OH too strongly for
OER. In contrast, the moderate *OH adsorption energy of
Fe2P is more favorable and translates to a superior elec-
trocatalytic performance. The relatively weaker *OH
adsorption on Fe2P compared with Ni5P4 can be under-
stood by their different adsorption configurations

(Figure 5E, F). In an octahedron-like configuration for
*OH adsorption on Fe2P (Figure 5E), the orbitals of the
surrounding five atoms (Figure 5E, small blue atoms) are
toward the central P atom (Figure 5E, purple atom). Such
a stable configuration in Fe2P results in its moderate *OH
adsorption. In contrast, for the tetrahedron-like configu-
ration of Ni5P4, the orbital directions are not toward the
central atom (Figure 5F), leading to a strong *OH adsorp-
tion on Ni5P4.

Phosphide-based transition metal electrocatalysts
have been well-investigated for HER as the negatively
charged phosphorous can offer extra active sites to trap
the positively charged protons and modulate the transi-
tion metal-phosphide bonds for more favorable hydrogen
adsorption on the transition metal site.23,56 However,
phosphide-based transition metals are less-often reported
as superior electrocatalysts for OER in alkaline media
due to their sluggish reaction kinetics. Considering the
superior OER performance of the corner-etched PBAs in
alkaline media and promising HER activity of metal

FIGURE 5 Density functional theory (DFT) simulations, and the electrocatalytic hydrogen evolution reaction (HER) and overall water

splitting performances. The top view of the 120
� �

facet of (A) Fe2P and (B) Ni5P4. The potential adsorption sites are marked by red dashed

circles. The atoms near the surface are visualized in the ball-stick mode and other atoms in line mode. (C–D) The adsorption energy of *OH

intermediate on (C) the Fe2P facet and (D) the Ni5P4 facet. (E–F) A tilted side view of the most stable *OH adsorption on (E) Fe2P and

(F) Ni5P4. The inset in (E) and (F) are the local configuration of *OH absorption. (G) HER polarization curves recorded at a scan rate of

5mV s�1 in 1M KOH. (H) Corresponding Tafel plots. (I) Polarization curves for overall water splitting obtained using a two-electrode system

at a scan rate of 5mV s�1 in 1MKOH. (J) Chronoamperometric test of the corner-etched PBAs-P catalyst for 45 h at an applied potential

of 1.64V.
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phosphides, we now assess the HER electrocatalytic
activity of corner-etched PBAs for developing a bifunc-
tional OER and HER catalyst for overall water splitting.
The HER activity of the corner-etched PBAs-P is evalu-
ated by LSV in 1 M KOH aqueous electrolyte at a scan
rate of 5 mV s�1 (Figure 5G). It delivers a cathodic cur-
rent density of 10 mA cm�2 at an overpotential of
145 mV, which was lower compared to that of cross-
PBAs-P and PBAs-P which required 182 and 221 mV,
respectively. Additionally, corner-etched PBAs also
exhibits the lowest Tafel slope of 73 mV dec�1, while
Tafel slopes of 107 and 119 mV dec�1 were recorded for
cross-PBAs-P and PBAs-P, respectively (Figure 5H). In
addition, the overpotential and Tafel slope of the corner-
etched PBAs-P are better or comparable to that of other
similar phosphide-based electrocatalysts assessed in alka-
line media, such as iron phosphide nanoparticles,57 Ni5P4
films,58 porous iron-doped cobalt phosphide
polyhedrons,59 ultrasmall diiron phosphide nanodots
anchored on graphene sheets,60 and iron-tuned super
nickel phosphide microstructures.61 Thus, besides being
a highly active OER electrocatalyst, the corner-etched
PBAs-P is also revealed to exhibit a promising electroca-
talytic performance toward HER. Encouraged by the
promising bifunctional OER and HER performances of
the corner-etched PBAs-P in alkaline media, we assem-
bled an electrolytic cell by integrating two corner-etched
PBAs-P electrodes as both the anode and cathode.
Impressively, current densities of 10 and 20 mA cm�2 are
attained at considerably low cell voltages of 1.64 and
1.73 V, respectively (Figure 5I). On the other hand, for a
similar current density of 10 mA cm�2, cross-PBAs-P and
PBAs-P required cell voltages of 1.72 and 1.75 V, respec-
tively. Subsequently, chromoamperometric test was also
conducted on the electrolytic cell setup with corner-
etched PBAs-P electrodes at constant potentials of 1.64 V
over 45 h (Figure 5J). The cell showed long term sus-
tained performances with no depreciation in current den-
sities. This indicates the impressive long-term durability
of the electrocatalyst for overall water splitting, and
unveils corner-etched PBAs-P to be not only highly
active, but also a very stable bifunctional electrocatalyst
in alkaline media.

3 | CONCLUSION

In summary, iron phosphide with highly active, exposed
120

� �
facets is preferentially prepared, making use of the

labile coordination network of PBAs. The obtained
corner-etched PBAs-P exhibits outstanding activity
toward OER with a small Tafel slope of 45mVdec�1 and
an overpotential of 260mV at a current density of

10mAcm�2, as well as remarkable electrochemical sta-
bility after long operation. Such impressive OER perfor-
mance originating from the active sites can be attributed
to its optimal reaction intermediates adsorption energy.
Furthermore, the catalyst also demonstrates activity
toward overall water splitting, requiring a small cell volt-
age of 1.64 V to drive a current density of 10mAcm�2.
This work paves a new avenue towards the rational
design and exploitation of metal organic frameworks for
selective synthesis of highly active phosphide OER
electrocatalysts.
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